Power for Ships on Inland Waterways

24. Int. Danube Conference, Samorin

3rd of December, 2019 | Maria SEGURA, Hinrich MOHR
Overview

Drivers

Background, Drivers, Regulations and Trends

▪ AVL Background
▪ Tightening of Emission Regulations

Engine Technology

Engine Technology & Trends

▪ 4 Stroke Engine Developments

Propulsion System

Future Propulsion Systems

▪ Alternative Fuels
▪ Hybridization
▪ Fuel Cell
Background of AVL

- AVL is the world's largest independent company for development, simulation and testing technology of powertrains.
- AVL's portfolio covers combustion engines, transmission, electric drive systems, batteries and fuel cell systems for all applications.
- AVL supports engine OEMs and operators in engine and system optimization with in-house SW tools and expert knowledge over the last 70 years.
AVL General Figures

RESEARCH 10%
of turnover in-house R&D

INNOVATION 1500
generated patents

STAFF
10,500 employees
65% engineers & scientists

GLOBAL FOOTPRINT
44 engineering locations
• >220 testbeds
• Global customer support network

GROWTH

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>0.15 billion €</td>
</tr>
<tr>
<td>2017</td>
<td>1.55 billion €</td>
</tr>
<tr>
<td>2018</td>
<td>1.75 billion €</td>
</tr>
<tr>
<td>2019</td>
<td>2.05 billion €</td>
</tr>
</tbody>
</table>

EXPERIENCE
70 years!

SALES

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>0.15 billion €</td>
</tr>
<tr>
<td>2017</td>
<td>1.55 billion €</td>
</tr>
<tr>
<td>2018</td>
<td>1.75 billion €</td>
</tr>
<tr>
<td>2019</td>
<td>2.05 billion €</td>
</tr>
</tbody>
</table>

ONE PARTNER
AVL Engine Development Experience

![Graph showing the relationship between displacement/cylinder and power/cylinder.](image)
Classification of emissions

Future legal requirements are based on two main aspects:

<table>
<thead>
<tr>
<th>Global Warming</th>
<th>Pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG/CO₂</td>
<td>NOx & PM/PN Emissions</td>
</tr>
<tr>
<td>Global Problem</td>
<td>Local Problem</td>
</tr>
<tr>
<td>Energy Sources and Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT - Technology</td>
</tr>
</tbody>
</table>

Focus on reduction of global CO₂ and local NOx & PM/PN emissions
Required reduction of CO₂ Emissions
Worldwide Transportation

A dramatic CO₂ reduction will be needed. Especially in areas, where it is possible by technology, like transport

CO₂ scenarios for worldwide transportation - tank to wheel (ttw) emissions.

\(\rightarrow \text{Need of DPF arises for engines of power class (P \geq 300), for PN control} \)

<table>
<thead>
<tr>
<th>Engine subcategory</th>
<th>Power range</th>
<th>Engine ignition type</th>
<th>(\text{CO}) g/kWh</th>
<th>(\text{HC}^{1}) g/kWh</th>
<th>(\text{NO}_x) g/kWh</th>
<th>PM mass g/kWh</th>
<th>PN #/kWh</th>
<th>Mandatory date of application of this regulation for</th>
<th>Test-cycle</th>
<th>EDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWP.v.1</td>
<td>19 \leq P < 75</td>
<td></td>
<td>5.00 (HC + NO(_x) \leq 4.70)</td>
<td>0.30</td>
<td>-</td>
<td>6.00</td>
<td>1 January 2018</td>
<td>1 January 2019</td>
<td>E3</td>
<td>10000</td>
</tr>
<tr>
<td>IWP.v.2</td>
<td>75 \leq P < 130</td>
<td></td>
<td>5.00 (HC + NO(_x) \leq 5.40)</td>
<td>0.14</td>
<td>-</td>
<td>6.00</td>
<td>1 January 2018</td>
<td>1 January 2019</td>
<td>E2</td>
<td>10000</td>
</tr>
<tr>
<td>IWP.v.3</td>
<td>130 \leq P < 300</td>
<td></td>
<td>3.50</td>
<td>1.00</td>
<td>2.10</td>
<td>0.16</td>
<td>-</td>
<td>1 January 2019</td>
<td>1 January 2020</td>
<td></td>
</tr>
<tr>
<td>IWP.v.4</td>
<td>P \geq 300</td>
<td></td>
<td>3.50</td>
<td>0.19</td>
<td>1.80</td>
<td>0.015</td>
<td>(1 \times 10^{-2})</td>
<td>6.00</td>
<td>1 January 2019</td>
<td>1 January 2020</td>
</tr>
<tr>
<td>IWP.c.1</td>
<td>19 \leq P < 75</td>
<td></td>
<td>5.00 (HC + NO(_x) \leq 4.70)</td>
<td>0.30</td>
<td>-</td>
<td>6.00</td>
<td>1 January 2018</td>
<td>1 January 2019</td>
<td>E2</td>
<td>10000</td>
</tr>
<tr>
<td>IWP.c.2</td>
<td>75 \leq P < 130</td>
<td></td>
<td>5.00 (HC + NO(_x) \leq 5.40)</td>
<td>0.14</td>
<td>-</td>
<td>6.00</td>
<td>1 January 2018</td>
<td>1 January 2019</td>
<td>E2</td>
<td>10000</td>
</tr>
<tr>
<td>IWP.c.3</td>
<td>130 \leq P < 300</td>
<td></td>
<td>3.50</td>
<td>1.00</td>
<td>2.10</td>
<td>0.10</td>
<td>-</td>
<td>1 January 2019</td>
<td>1 January 2020</td>
<td></td>
</tr>
<tr>
<td>IWP.c.4</td>
<td>P \geq 300</td>
<td></td>
<td>3.50</td>
<td>0.19</td>
<td>1.80</td>
<td>0.015</td>
<td>(1 \times 10^{-2})</td>
<td>6.00</td>
<td>1 January 2019</td>
<td>1 January 2020</td>
</tr>
</tbody>
</table>

Source: AVL Emission Report

\textbf{\textit{\`{C}ategory IWP\textquotec}}

Engines exclusively for use in inland waterway vessels, for their direct or indirect propulsion, or intended for their direct or indirect propulsion, having a reference power that is greater than or equal to 19kW

\textbf{\textit{\`{C}ategory IWA\textquotec}}

Auxiliary engines exclusively for use in inland waterways vessels, having a net power greater than 19 kW
Apart from the reduction in allowable PM emissions, Stage V introduces PN limits for mid to large engines (P ≥ 300 kW)
- Introduction of PN limit makes the application of DPF mandatory
- Emissions regulations are defined for both propulsion and auxiliary engines
Technologies for Future Large Engines

Multi-purpose engine integrated into system

Fuel Flexibility
Diesel, DF and Gas
Methanol (CH$_3$OH), Ammonia (NH$_3$)
Hydrogen (H$_2$) LP
Hydrogen (H$_2$) HP-DI

High peak firing Pressure

Aggressive Miller
(VIVT required)

High Efficiency Charging
Family concept same TC size & type for all
Single stage from 2 to 4 turbos (cylinder number) extended with sequential TC, where needed

2-Stage TC

Multi Fuel Combustion Direct Injection

EGR
actually niche only

Exhaust Aftertreatment
DOC+DPF+SCR+ASC

Variable Valve Actuation
(De-coupled intake valve closing)

Friction optimized

New materials
Strength and heat transfer

Smart components to support condition Monitoring
Smart bearings
Closed loop injector
Cylinder pressure controlled ECU

Increased BMEP
Power-to-X Routes and Efficiencies

Power source | Power electronics | electrolysis | Gas treatment | Synthesis Process +treatment

Power-to-X Processes:
- Drying, PSA, TSA, Membrane

Products and Efficiencies:

<table>
<thead>
<tr>
<th>Product</th>
<th>$\eta_{\text{conv.}}$</th>
<th>η_{future} (near future)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>67%*</td>
<td>80%**</td>
</tr>
<tr>
<td>Methane</td>
<td>49%*</td>
<td>80%**</td>
</tr>
<tr>
<td>FT Diesel</td>
<td>45%*</td>
<td>51%*</td>
</tr>
<tr>
<td>Methanol</td>
<td>45%*</td>
<td>72%*</td>
</tr>
<tr>
<td>DME</td>
<td>53%*</td>
<td>65%*</td>
</tr>
</tbody>
</table>

Sources:
* Based on Literature:
 - Tremel, 2017
 - Becker, 2012
** based on AVL project results

PSA ... Pressure swing adsorption
TSA ... Temperature swing adsorption
DME ... Dimethyl ether
Influencing factors to select the future energy carrier

- **Ecology**
 - Greenhouse gas emissions – CO₂ equivalent
 - Particulate emissions – mass and number
 - Pollutant emissions – NOₓ, SOₓ, CO, HC,…

- **Economy**
 - Efficiency – Well to Wake / Wheel – Cradle to Grave ?
 - Availability – Infrastructure for production, transport and storage
 - Energy Density – Operation time and range
 - Safety – Production, transport, storage and consumption
 - Flexibility – Usable for multiple applications, Re-use ICE PTs

- **Politically**
 - Public acceptance – No fear and good image
 - Incentives – For building up production and infrastructure, lower taxes
 - Legislation – Definition of boundary conditions
Liquefied Natural Gas – alternative fuel for transportation expanding into Danube region

Workshop on Modernization of Danube Vessels Fleet
Vienna, 18 April 2018

LNG in the Danube Region
- LNG Masterplan for Rhine-Main-Danube
- LNG for Upper Austria
- Projects in Slovakia
- Projects in Hungary
- Projects in preparation in Romania (Constanta & Galati)

Source: Pro Danube Management GmbH, Manfred Seitz
Ship Hybrid Retrofit Scope of Work – System Simulation

- Simulation of Initial System (Reference Case)
- Optimization of Power Management
- Battery Concept
- Simulation & Optimization of Hybrid System
- Profitability Assessment
Electrification & Hybridization
Drivers and Benefit

Efficiency benefit and ROI fully depends on application, hybrid system architecture and implementation of controls strategy.

- **Zero Emission Operation**
 - Battery Electric Operation
 - Fulfilling Local Regulations

- **Efficiency Improvement**
 - Sweet Spotting
 - Part-load operation & boosting
 - Spinning reserve minimization

- **Machinery Protection**
 - Peak shaving
 - Avoiding load jerks

- **Reducing Transients**
 - Manoeuvering
 - Dynamic Positioning

- **Redundancy**
 - Improvements to reliability and availability

- **Silence & Comfort**
 - Reduced no. of engines running
 - Hotel load pure on battery power

- **Acoustic Signature**
 - Alter acoustic signature
 - Silent mode operation

- **Power Boost**
 - Adding additional power for short time

Source: CORVUS Energy

Battery Ferries
Source: EST-Floattech

Hybrid Tugs
Source: Sintef

Hybrid OSVs
Source: Abeking und Rasmussen

Hybrid Pilots
Source: Boskalis

Hybrid Dredgers
Source: Rolls-Royce

Hybrid Fregattes
Source: Heesen Yachts

Hybrid Yachts
Source: Heesen Yachts
Fuel Cell for Marine Propulsion
Still too big?

Volumetric Power Density of Diesel Engine is similar to PEM Fuel Cell

3.2 MW Diesel Engine

3 MW PEM Fuel Cell

2 m
>20 Fuel Cell Projects in Shipping

<table>
<thead>
<tr>
<th>Project</th>
<th>Concept</th>
<th>Year</th>
<th>Fuel Cell</th>
<th>Capacity</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/V Gjesen</td>
<td>Small passenger ship in the harbour of Bergen</td>
<td>2010</td>
<td>HTPEM</td>
<td>12 kW</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF-Vågen</td>
<td>Hybrid propulsion using a fuel cell and a diesel engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Submarines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US SSFC</td>
<td>The program addresses technology gaps to enable fuel cell power systems that will meet the electrical power needs of naval platforms and systems</td>
<td>U.S. Department of Defense, Office of Naval Research</td>
<td>2000 - 2011</td>
<td>PEM</td>
<td>MFCF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP-BRZEZE</td>
<td>Feasibility study of a high-speed hydrofoam fuel cell passenger ferry and hydrogen refueling station in San Francisco bay area</td>
<td>SanDiego National Lab., Rad and White Fox</td>
<td>2015 - present</td>
<td>PEM</td>
<td>Hydrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4ships - Topolmen</td>
<td>Support of IFG Cede development to include a FC chapter and set the regulatory framework for the use of maritime FC systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RiverCell</td>
<td>250 kW modularized HT-PEM fuel cell system developed and tested as part of a hybrid power solution for river cruise vessels</td>
<td>Meyer Werft, DNVGL, Neptun Werft, Viking Cruises</td>
<td>Phase 1: 2015-2017</td>
<td>HTPEM</td>
<td>250 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phase 2: 2017-2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RiverCell - Elleta</td>
<td>Feasibility study for a fuel cell as part of a hybrid power solution for a tollway in Amsterdam</td>
<td>Tü Berlin, BehAHLA, DNvGL, etc.</td>
<td>2015-2016</td>
<td>HTPEM</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZenShip - Absefiver</td>
<td>100 kW PEMFC system developed and tested onboard of a small passenger ship in the area of Aalborg in Denmark</td>
<td>Proton Motor, GL Abtei Touristik GmbH, Linde Group, etc.</td>
<td>2006-2013</td>
<td>PEM</td>
<td>96 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCSHIP</td>
<td>Assess the potential for maritime use of FC and develops a Roadmap for future R&D on FC application on ships</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Now N-HShip</td>
<td>Research project on the use of hydrogen in marine applications</td>
<td>INE (Icelandic New Energy), GL, DNvGL, etc.</td>
<td>2004-2006</td>
<td>HTPEM</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanko H2</td>
<td>Small passenger ship in the canals of Amsterdam</td>
<td>RiederJovers etc.</td>
<td>2012-2014</td>
<td>PEM</td>
<td>60 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hornblower Hybrid</td>
<td>Hybrid ferry with diesel generator, batteries, PV, wind and fuel cell</td>
<td>Hornblower</td>
<td>2012-2014</td>
<td>PEM</td>
<td>32 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen-Ship</td>
<td>Small passenger ship which operates in Bristol</td>
<td>Bristol Boat Trips etc.</td>
<td>2012-2014</td>
<td>PEM</td>
<td>12 kW</td>
</tr>
</tbody>
</table>

Table A.1: Fuel cell projects in shipping

Source: EMSA Study on the use of Fuel Cells in Shipping

Confidential
Summary

- New regulations will drive new technologies for prime movers, energy storage and hybridized propulsion system architectures
- Diesel engines will require a DPF to fulfill EU Stage V emission regulations. EGR or SCR for NOx reduction
- Fossil LNG as intermediate fuel. Future: Bio-LNG and synthetic LNG from renewable sources. Investments necessary
- Electrical energy storages will find their way on board for various applications, in most cases taking the fluctuating load from the installed prime movers
- Hybrid systems will allow an optimum and flexible provision of energy on board with low environmental impact for a wide variety of marine applications
- Fuel cells might establish towards an alternative to the internal combustion engine, although there are big challenges regarding hydrogen availability (large scale), storage of hydrogen as fuel, bunkering and transportation
Summary

- New regulations will drive new technologies for prime movers, energy storage and hybridized propulsion system architectures

- Diesel engines will require a DPF to fulfill EU Stage V emission regulations. EGR or SCR for NOx reduction

- Fossil LNG as intermediate fuel. Future: Bio-LNG and synthetic LNG from renewable sources. Investments necessary

- Electrical energy storages will find their way on board for various applications, in most cases taking the fluctuating load from the installed prime movers

- Hybrid systems will allow an optimum and flexible provision of energy on board with low environmental impact for a wide variety of marine applications

- Fuel cells might establish towards an alternative to the internal combustion engine, although there are big challenges regarding hydrogen availability (large scale), storage of hydrogen as fuel, bunkering and transportation

With the right Fuel and Technologies, The Internal Combustion Engine is far from dead!
www.avl.com